skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Foley, Nicole"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Abstract Tree House Explorer (THEx) is a genome browser that integrates phylogenomic data and genomic annotations into a single interactive platform for combined analysis. THEx allows users to visualize genome-wide variation in evolutionary histories and genetic divergence on a chromosome-by-chromosome basis, with continuous sliding window comparisons to gene annotations, recombination rates, and other user-specified, highly customizable feature annotations. THEx provides a new platform for interactive phylogenomic data visualization to analyze and interpret the diverse evolutionary histories woven throughout genomes. Hosted on Conda, THEx integrates seamlessly into new or pre-existing workflows. 
    more » « less
  3. Tree House Explorer (THEx) is a genome browser that integrates phylogenomic data and genomic annotations into a single interactive platform for combined analysis. THEx allows users to visualize genome-wide variation in evolutionary histories and genetic divergence on a chromosome-by-chromosome basis, with continuous sliding window comparisons to gene annotations, recombination rates, and other user-specified, highly customizable feature annotations. THEx provides a new platform for interactive phylogenomic data visualization to analyze and interpret the diverse evolutionary histories woven throughout genomes. Hosted on Conda, THEx integrates seamlessly into new or pre-existing workflows. 
    more » « less
  4. The catalytic conversion of CO2 to value-added chemicals and fuels has been long regarded as a promising approach to the mitigation of CO2 emissions if green hydrogen is used. Light olefins, particularly ethylene and propylene, as building blocks for polymers and plastics, are currently produced primarily from CO2-generating fossil resources. The identification of highly efficient catalysts with selective pathways for light olefin production from CO2 is a high-reward goal, but it has serious technical challenges, such as low selectivity and catalyst deactivation. In this review, we first provide a brief summary of the two dominant reaction pathways (CO2-Fischer-Tropsch and MeOH-mediated pathways), mechanistic insights, and catalytic materials for CO2 hydrogenation to light olefins. Then, we list the main deactivation mechanisms caused by carbon deposition, water formation, phase transformation and metal sintering/agglomeration. Finally, we detail the recent progress on catalyst development for enhanced olefin yields and catalyst stability by the following catalyst functionalities: (1) the promoter effect, (2) the support effect, (3) the bifunctional composite catalyst effect, and (4) the structure effect. The main focus of this review is to provide a useful resource for researchers to correlate catalyst deactivation and the recent research effort on catalyst development for enhanced olefin yields and catalyst stability. 
    more » « less
  5. null (Ed.)
    The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species. 
    more » « less
  6. Shapiro, Beth (Ed.)
    Abstract In addition to including one of the most popular companion animals, species from the cat family Felidae serve as a powerful system for genetic analysis of inherited and infectious disease, as well as for the study of phenotypic evolution and speciation. Previous diploid-based genome assemblies for the domestic cat have served as the primary reference for genomic studies within the cat family. However, these versions suffered from poor resolution of complex and highly repetitive regions, with substantial amounts of unplaced sequence that is polymorphic or copy number variable. We sequenced the genome of a female F1 Bengal hybrid cat, the offspring of a domestic cat (Felis catus) x Asian leopard cat (Prionailurus bengalensis) cross, with PacBio long sequence reads and used Illumina sequence reads from the parents to phase >99.9% of the reads into the 2 species’ haplotypes. De novo assembly of the phased reads produced highly continuous haploid genome assemblies for the domestic cat and Asian leopard cat, with contig N50 statistics exceeding 83 Mb for both genomes. Whole-genome alignments reveal the Felis and Prionailurus genomes are colinear, and the cytogenetic differences between the homologous F1 and E4 chromosomes represent a case of centromere repositioning in the absence of a chromosomal inversion. Both assemblies offer significant improvements over the previous domestic cat reference genome, with a 100% increase in contiguity and the capture of the vast majority of chromosome arms in 1 or 2 large contigs. We further demonstrated that comparably accurate F1 haplotype phasing can be achieved with members of the same species when one or both parents of the trio are not available. These novel genome resources will empower studies of feline precision medicine, adaptation, and speciation. 
    more » « less